skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harper, Joshua Méndez"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recent field studies have shown that the presence of ash in the atmosphere can produce measurable attenuation of Global Positioning System (GPS) signals (Aranzulla et al., 2013,https://doi.org/10.1007/s10291-012-0294-4; Larson, 2013,https://doi.org/10.1002/grl.50556; Larson et al., 2017,https://doi.org/10.1016/j.jvolgeores.2017.04.005). The ability to detect plumes using GPS is appealing because many active volcanoes are already instrumented with high‐quality receivers. However, analyses using a Ralyeigh approximation have shown that the large attenuations cannot be explained by the scattering and absorption associated with ash or hydrometeors alone. Here, we show that the extinction of GPS signals, which fall into the L‐band of the electromagnetic spectrum, may be exacerbated significantly by excess surface charge on pyroclasts. Indeed, volcanic eruptions are often accompanied by a range of electrostatic processes, leading, in some cases, to spectacular lightning storms. We use a modified Mie scattering model to demonstrate that electrostatic effects can increase the extinction of L‐band radiation by up to an order of magnitude, producing attenuations consistent with those observed in the field. Thus, future work involving GPS as a tool to remotely probe plumes must take into account the electrification of ash in radiative transfer models. Additionally, we propose that the sensitivity of GPS to particle charging may catalyze the development of new techniques to explore electrostatic processes in plumes, especially if GPS measurements are complemented with millimeter‐wave RADAR measurements. 
    more » « less